安心医药招商资讯网专业提供药品招商、药品代理、医药招商、保健品招商、医疗器械招商、医药原料供求的网络平台!
您现在的位置是:首页 > 医药政策

怎么看近红外是哪种模式(NIR是近红外吗)

时间:2023-11-01作者:fangzhe8666分类:医药政策浏览:76评论:0

一、红外光谱区的范围是多少

范围是:(0.75μm~300μm)

通常将红外光谱分为三个区域:近红外区(0.75~2.5μm)、中红外区(2.5~25μm)和远红外区(25~300μm)。一般说来,近红外光谱是由分子的倍频、合频产生的;

中红外光谱属于分子的基频振动光谱;远红外光谱则属于分子的转动光谱和某些基团的振动光谱。

由于绝大多数有机物和无机物的基频吸收带都出现在中红外区,因此中红外区是研究和应用最多的区域,积累的资料也最多,仪器技术最为成熟。通常所说的红外光谱即指中红外光谱。

扩展资料:

应用:

红外光谱对样品的适用性相当广泛,固态、液态或气态样品都能应用,无机、有机、高分子化合物都可检测。

此外,红外光谱还具有测试迅速,操作方便,重复性好,灵敏度高,试样用量少,仪器结构简单等特点,因此,它已成为现代结构化学和分析化学最常用和不可缺少的工具。

红外光谱在高聚物的构型、构象、力学性质的研究以及物理、天文、气象、遥感、生物、医学等领域也有广泛的应用。

红外吸收峰的位置与强度反映了分子结构上的特点,可以用来鉴别未知物的结构组成或确定其化学基团;而吸收谱带的吸收强度与化学基团的含量有关,可用于进行定量分析和纯度鉴定。

另外,在化学反应的机理研究上,红外光谱也发挥了一定的作用。但其应用最广的还是未知化合物的结构鉴定。

红外光谱不但可以用来研究分子的结构和化学键,如力常数的测定和分子对称性的判据,而且还可以作为表征和鉴别化学物种的方法。

例如气态水分子是非线性的三原子分子,它的v1=3652厘米、v3=3756厘米、v2=1596厘米而在液态水分子的红外光谱中,由于水分子间的氢键作用,使v1和v3的伸缩振动谱带叠加在一起,在3402厘米处出现一条宽谱带,它的变角振动v2位于1647厘米。

在重水中,由于氘的原子质量比氢大,使重水的v1和v3重叠谱带移至2502厘米处,v2为1210厘米。以上现象说明水和重水的结构虽然很相近,但红外光谱的差别是很大的。

参考资料:百度百科--红外光谱

二、红外\近红外\远红外都有什么区别,一般的用途是什么

同属红外线,区别为波长不同。具体明细如下:

近红外线(NIR, IR-A DIN):波长在0.75-1.4微米,以水的吸收来定义,由于在二氧化矽玻璃中的低衰减率,通常使用在光纤通信中。在这个区域的波长对影像的增强非常敏锐。例如,包括夜视设备,像是夜视镜。

短波长红外线(SWIR, IR-B DIN):1.4-3微米,水的吸收在1,450奈米显著的增加。 1,530至1,560奈米是主导远距离通信的主要光谱区域。

中波长红外线(MWIR, IR-C DIN)也称为中红外线:波长在3-8微米。被动式的红外线追热导向飞弹技术在设计上就是使用3-5微米波段的大气窗口来工作,对飞机红外线标识的归航,通常是针对飞机引擎排放的羽流。

长波长红外线(LWIR, IR-C DIN):8-15微米。这是"热成像"的区域,在这个波段的感测器不需要其他的光或外部热源,例如太阳、月球或红外灯,就可以获得完整的热排放量的被动影像。前视性红外线(FLIR)系统使用这个区域的频谱。,有时也会被归类为"远红外线"

远红外线(FIR):50-1,000微米(参见远红外线雷射)。

NIR和SWIR有时被称为"反射红外线",而MWIR和LWIR有时被称为"热红外线",这是基于黑体辐射曲线的特性,典型的'热'物体,像是排气管,同样的物体通常在MW的波段会比在LW波段下来得更为明亮。

拓展资料

红外线的发现

公元1666年牛顿发现光谱并测量出3,900埃~7,600埃(400nm~700nm)是可见光的波长。 1800年4月24日英国伦敦皇家学会的威廉·赫歇尔发表太阳光在可见光谱的红光之外还有一种不可见的延伸光谱,具有热效应。

他所使用的方法很简单,用一支温度计测量经过稜镜分光后的各色光线温度,由紫到红,发现温度逐渐增加,可是当温度计放到红光以外的部份,温度仍持续上升,因而断定有红外线的存在。

在紫外线的部份也做同样的测试,但温度并没有增高的反应。紫外线是1801年由RITTER用氯化银感光剂所发现。

底片所能感应的近红外线波长是肉眼所能看见光线波长的两倍,用底片可以记录到的波长上限是13,500埃,如果再加上其它特殊的设备,则最高可以达到20,000埃,再往上就必须用物理仪器侦测了。

三、近红外波长范围

红外线波长范围是1mm~750nm,具体如下:

近红外光(Near Infrared,NIR)是介于可见光(ⅥS)和中红外光(MIR)之间的电磁波,按ASTM(美国试验和材料检测协会)定义是指波长在780~2526nm范围内的电磁波。

习惯上又将近红外区划分为近红外短波(780~1100nm)和近红外长波(1100~2526nm)两个区域。近红外区域是人们最早发现的非可见光区域。

近红外光谱(NIR)分析技术是分析化学领域迅猛发展的高新分析技术,越来越引起国内外分析专家的注目,在分析化学领域被誉为分析“巨人”,它的出现可以说带来了又一次分析技术的革命。

近红外区域是人们最早发现的非可见光区域。但由于物质在该谱区的倍频和合频吸收信号弱,谱带重叠,解析复杂,受当时的技术水平限制,近红外光谱“沉睡”了近一个半世纪。直到20世纪60年代,随着商品化仪器的出现及Norris等人所做的大量工作。

提出物质的含量与近红外区内多个不同的波长点吸收峰呈线性关系的理论,并利用NIR漫反射技术测定了农产品中的水分、蛋白、脂肪等成分,才使得近红外光谱技术曾经在农副产品分析中得到广泛应用。

四、近红外可见吗

不可见。

近红外光(Near Infrared,NIR)是介于可见光(ⅥS)和中红外光(MIR)之间的电磁波,按ASTM(美国试验和材料检测协会)定义是指波长在780~2526nm范围内的电磁波,习惯上又将近红外区划分为近红外短波(780~1100nm)和近红外长波(1100~2526nm)两个区域。近红外区域是人们最早发现的非可见光区域。

怎么看近红外是哪种模式(NIR是近红外吗)

近红外光(Near Infrared,NIR)是介于可见光(ⅥS)和中红外光(MIR)之间的电磁波,按ASTM(美国试验和材料检测协会)定义是指波长在780~2526nm范围内的电磁波,习惯上又将近红外区划分为近红外短波(780~1100nm)和近红外长波(1100~2526nm)两个区域。

近红外光谱属于分子振动光谱的倍频和主频吸收光谱,主要是由于分子振动的非谐振性使分子振动从基态向高能级跃迁时产生的,具有较强的穿透能力。近红外光主要是对含氢基团X-H(X=C、N、O)振动的倍频和合频吸收,其中包含了大多数类型有机化合物的组成和分子结构的信息。由于不同的有机物含有不同的基团,不同的基团有不同的能级,不同的基团和同一基团在不同物理化学环境中对近红外光的吸收波长都有明显差别,且吸收系数小,发热少,因此近红外光谱可作为获取信息的一种有效的载体。近红外光照射时,频率相同的光线和基团将发生共振现象,光的能量通过分子偶极矩的变化传递给分子;而近红外光的频率和样品的振动频率不相同,该频率的红外光就不会被吸收。因此,选用连续改变频率的近红外光照射某样品时,由于试样对不同频率近红外光的选择性吸收,通过试样后的近红外光线在某些波长范围内会变弱,透射出来的红外光线就携带有机物组分和结构的信息。通过检测器分析透射或反射光线的光密度,就可以确定该组分的含量。

近红外区域是人们最早发现的非可见光区域。但由于物质在该谱区的倍频和合频吸收信号弱,谱带重叠,解析复杂,受当时的技术水平限制,近红外光谱“沉睡”了近一个半世纪。直到20世纪60年代,随着商品化仪器的出现及Norris等人所做的大量工作,提出物质的含量与近红外区内多个不同的波长点吸收峰呈线性关系的理论,并利用NIR漫反射技术测定了农产品中的水分、蛋白、脂肪等成分,才使得近红外光谱技术曾经在农副产品分析中得到广泛应用。到60年代中后期,随着各种新的分析技术的出现,加之经典近红外光谱分析技术暴露出的灵敏度低、抗干扰性差的弱点,使人们淡漠了该技术在分析测试中的应用,此后,近红外光谱进入了一个沉默的时期。70年代产生的化学计量学(Chemometrics)学科的重要组成部分——多元校正技术在光谱分析中的成功应用,促进了近红外光谱技术的推广。到80年代后期,随着计算机技术的迅速发展,带动了分析仪器的数字化和化学计量学的发展,通过化学计量学方法在解决光谱信息提取和背景干扰方面取得的良好效果,加之近红外光谱在测样技术上所独有的特点,使人们重新认识了近红外光谱的价值,近红外光谱在各领域中的应用研究陆续展开。进入90年代,近红外光谱在工业领域中的应用全面展开,有关近红外光谱的研究及应用文献几乎呈指数增长,成为发展最快、最引人注目的一门独立的分析技术。由于近红外光在常规光纤中具有良好的传输特性,使近红外光谱在在线分析领域也得到了很好的应用,并取得良好的社会效益和经济效益,从此近红外光谱技术进入一个快速发展的新时期。

文章版权声明:除非注明,否则均为安心医药招商资讯网原创文章,转载或复制请以超链接形式并注明出处。
相关推荐

猜你喜欢